On a Multiple Item Selling Model with Vector Offers with Applications to Organizational Hiring and a General Sequential Stochastic Assignment Model

Rebecca Dizon-Ross
Department of Economics
Stanford University
Stanford, CA., 94305, USA
dizonross@stanford.edu
and

Sheldon M. Ross
Epstein Department of Industrial and Systems Engineering
University of Southern California
Los Angeles, CA., 90089, USA.
smross@usc.edu

D-L-R Seq. Stoch. Assignment Problem:
$N=\{1, \ldots, n\}$ is set of people having values p_{1}, \ldots, p_{n}
Jobs arrive sequentially; job has value x
return is $p x$

General Seq. Stoch. Assignment Problem:
$N=\{1, \ldots, n\}$
Jobs arrive sequentially; $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$
job can be rejected: $C, 0<\beta \leq 1$

Interpretation; workers for sale; job is a bid.
What if allow bids for multiple workers?

Set of items to sell: $N=\{1, \ldots, n\}$
Buyers bid for specified subsets S_{1}, \ldots, S_{k} of items
Bid is a vector $\mathbf{X}=\left(X_{S_{1}}, \ldots, X_{S_{k}}\right)$ with known dist.
At most one of the subsets can be sold to each buyer.

State of the system: (S, \mathbf{x})
Optimality equation:

$$
\begin{gathered}
V(S, \mathbf{x})=\max \left(\beta V(S), \max _{1 \leq i \leq k: S_{i} \subset S}\left[x_{S_{i}}+\beta V\left(S-S_{i}\right)\right]\right)-c \\
=\max (\beta V(S), R(S, \mathbf{x}))-c \\
V(T)=E[V(T, \mathbf{X})]
\end{gathered}
$$

Proposition $1 V(S)$ is the unique value v such that

$$
\begin{equation*}
c+(1-\beta) v=E\left[(R(S, \mathbf{X})-\beta v)^{+}\right] \tag{1}
\end{equation*}
$$

Numerical Procedure

- Generate iid random offer vectors $\mathbf{X}^{j}, j=1, \ldots, m$
- Using $R(\{i\}, \mathbf{x})=x_{\{i\}}$, determine $V(i), i=1, \ldots, n$
- Note that this yields $R(S, \mathbf{x})$ for $|S|=2$
- Determine $V(S)$ for all two point sets S

How to determine $V(S)$ when know $V(T)$ for $T \subset S$
binary search
$E\left[\left(R(S, \mathbf{X})-\beta v^{*}\right)^{+}\right] \approx \Sigma_{j=1}^{m} \frac{1}{m}\left(R\left(S, \mathbf{X}^{j}\right)-\beta v^{*}\right)^{+}$.

Proposition 2

$$
V(S) \geq \max _{1 \leq i \leq k: S_{i} \subset S}\left[E\left[X_{S_{i}}\right]+\beta V\left(S-S_{i}\right)\right]-c
$$

1 A Special Case Model where Buyers bid for all Subsets
Offer vector Y_{1}, \ldots, Y_{n}
Buyer willing to buy any set T for the price $\Sigma_{i \in T} Y_{i}$.

$$
\begin{aligned}
V(S, \mathbf{y}) & =\max _{\emptyset \subset S^{\prime} \subset S}\left[\sum_{j \in S^{\prime}} y_{j}+\beta V\left(S-S^{\prime}\right)\right]-c \\
& =\max (\beta V(S), R(S, \mathbf{y}))-c
\end{aligned}
$$

B-F gave OE, but not its solution.
Let $\alpha_{i}(c) \equiv \beta V(\{i\})$.

Proposition 3 Optimal policy never sells i for the offered value $y_{i}<\alpha_{i}(c)$.

Should you always sell i in state (S, \mathbf{y}) if $y_{i}>\alpha_{i}(c /|S|)$?
Example: $n=2, \beta=c=1$. Suppose Y_{1}, Y_{2} ind.

$$
\begin{gathered}
P\left(Y_{1}=1\right)=.99, \quad P\left(Y_{1}=10\right)=.01 \\
P\left(Y_{2}=1\right)=1-10^{-10}, \quad P\left(Y_{2}=10^{20}\right)=10^{-10}
\end{gathered}
$$

Proposition 4 It is optimal in state (S, \mathbf{y}) to sell all items in S when $y_{i} \geq \alpha_{i}(c /|S|)$ for all $i \in S$.

Proposition 5 For $|S| \geq 2$,

$$
\max _{i \in S}\left\{\alpha_{i}(c) / \beta+V(S-i)\right\} \leq V(S) \leq \sum_{i \in S} \alpha_{i}(c /|S|) / \beta
$$

If it is optimal to sell item $1 \in S$ when the offer vector is x_{1}, \ldots, x_{n} it is necessarily optimal to sell item 1 if the offer vector were y_{1}, \ldots, y_{n} whenever $y_{1}>x_{1}$?

$$
P\left(Y_{1}=1\right)=.98, P\left(Y_{1}=2\right)=.01, P\left(Y_{1}=10\right)=.01
$$

Optimal to sell item 1 (and item 2) if the offer vector were $\left(1,10^{20}\right)$ but optimal to sell neither if the offer vector were $(2,1)$.

However, if optimal to sell 1 when the offer vector is x_{1}, \ldots, x_{n} then optimal to sell 1 if the offer vector were y_{1}, \ldots, y_{n} provided that $y_{i} \geq x_{i}$ for all $i \in S$.

That is, optimal set to sell is increasing function of offer vector

Lemma 1 (Bruss-Ferguson)

$$
V(S \cup T)+V(S \cap T) \geq V(S)+V(T)
$$

New Proof:
Seller 1 has $|S|+|T|$ items arranges in 2 collections: S and T

Seller 2 has same $|S|+|T|$ items arranges in 2 collections: $S \cup T$ and $S T$
offer vector y_{1}, \ldots, y_{n}, buyer will buy any number sellers cost per period: c per unsold collection seller 1 uses opt. policy: yields $V(S)+V(T)$ seller 2 matches 1 always choosing from $S T$ collection

Proposition 6 In state (S, \mathbf{y}), the optimal set (a) sold is an increasing function of \mathbf{y}. (b) not sold is an increasing function of S.

A Heuristic Policy when n is Large

Problem with $2 n$ items. Randomly partition into two sets N_{1} and N_{2} of n items each. Use optimal policies in subproblems with per period cost $c / 2$. Recombine when possible.

Example 2. $n=2, X_{1}, X_{2}$ are ind $(0,1), \beta=1$.

Table 1: For $n=2$

c	expected return from heuristic policy	optimal expected retı
.1	1.271	1.273
.2	.996	1.000
.3	.799	.804
.4	.644	.651
.5	.519	.524
.6	.409	.412
.7	.304	.305
.8	.201	.201
.9	.100	.100

Offer Vectors are iid

Prop. $V(r)$ is convex.

Table 2: $V(n)$ when X_{1}, \ldots, X_{n} are iid uniform $(0,1)$ and $c=.1$

n	$V(n)$
1	0.553
2	1.273
3	2.035
4	2.826
5	3.637
6	4.463
7	5.302
8	6.150
9	7.007
10	7.871

