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D-L-R Seq. Stoch. Assignment Problem: 

N = {1, . . . , n} is set of people having values p1, . . . , pn 

Jobs arrive sequentially; job has value x 

return is px 

General Seq. Stoch. Assignment Problem: 

N = {1, . . . , n} 

Jobs arrive sequentially; x = (x1, . . . , xn) 

job can be rejected: C, 0 < β ≤ 1 

Interpretation; workers for sale; job is a bid. 
What if allow bids for multiple workers? 
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Set of items to sell: N = {1, . . . , n} 

Buyers bid for specified subsets S1, . . . , Sk of items 

Bid is a vector X = (XS1, . . . , XSk ) with known dist. 

At most one of the subsets can be sold to each buyer. 

State of the system: (S, x) 

⎛ ⎜⎝ 

Optimality equation: 

V (S, x) βV (S), max [xSi + βV (S − Si)] − c= max 
1≤i≤k:Si⊂S 

= max (βV (S), R(S, x)) − c 

V (T ) = E[V (T, X)] 

Proposition 1 V (S) is the unique value v such that 

c + (1 − β)v = E[(R(S, X) − βv)+] (1) 

⎞ ⎟⎠ 

3 



--

Numerical Procedure 

• Generate iid random offer vectors Xj, j = 1, . . . ,m 

• Using R({i}, x) = x{i}, determine V (i), i = 1, . . . , n 

• Note that this yields R(S, x) for |S| = 2 

• Determine V (S) for all two point sets S 

How to determine V (S) when know V (T ) for T ⊂ S 

binary search 

+1E[(R(S, X) − βv∗)+] ≈ Pm
j=1 m 

� 

R(S, Xj) − βv∗ 
� 

. 

Proposition 2 

V (S) ≥ max [E[XSi] + βV (S − Si)] − c 
1≤i≤k:Si⊂S 

4 



1 A Special Case Model where Buyers bid for all Subsets 

Offer vector Y1, . . . , Yn 

Buyer willing to buy any set T for the price P 
i∈T Yi. 

V (S, y) = max [ 
X 

yj + βV (S − S 0)] − c 
∅⊂S0⊂S j∈S0 

= max (βV (S), R(S, y)) − c 

B-F gave OE, but not its solution. 

Let αi(c) ≡ βV ({i}). 

Proposition 3 Optimal policy never sells i for the 
offered value yi < αi(c). 

Should you always sell i in state (S, y) if yi > αi(c/|S|)? 

Example: n = 2, β = c = 1. Suppose Y1, Y2 ind. 

P (Y1 = 1) = .99, P (Y1 = 10) = .01 

P (Y2 = 1) = 1 − 10−10 , P (Y2 = 1020) = 10−10 
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Proposition 4 It is optimal in state (S, y) to sell 
all items in S when yi ≥ αi(c/|S|) for all i ∈ S. 

Proposition 5 For |S| ≥ 2, 
X 

max{αi(c)/β + V (S − i)} ≤ V (S) ≤ αi(c/|S|)/β
i∈S i∈S 
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If it is optimal to sell item 1 ∈ S when the offer vector 
is x1, . . . , xn it is necessarily optimal to sell item 1 if the 
offer vector were y1, . . . , yn whenever y1 > x1? 

P (Y1 = 1) = .98, P (Y1 = 2) = .01, P (Y1 = 10) = .01 

Optimal to sell item 1 (and item 2) if the offer vector 
were (1, 1020) but optimal to sell neither if the offer 
vector were (2, 1). 

However, if optimal to sell 1 when the offer vector is 
x1, . . . , xn then optimal to sell 1 if the offer vector were 
y1, . . . , yn provided that yi ≥ xi for all i ∈ S. 

That is, optimal set to sell is increasing function of 
offer vector 
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Lemma 1 (Bruss-Ferguson) 

V (S ∪ T ) + V (S ∩ T ) ≥ V (S) + V (T ) 

New Proof: 
Seller 1 has |S| + |T | items 
arranges in 2 collections: S and T 

Seller 2 has same |S| + |T | items 
arranges in 2 collections: S ∪ T and ST 

offer vector y1, . . . , yn, buyer will buy any number 
sellers cost per period: c per unsold collection 
seller 1 uses opt. policy: yields V (S) + V (T ) 
seller 2 matches 1 always choosing from ST collection 
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Proposition 6 In state (S, y), the optimal set 
(a) sold is an increasing function of y. 
(b) not sold is an increasing function of S. 

A Heuristic Policy when n is Large 
Problem with 2n items. Randomly partition into two 
sets N1 and N2 of n items each. Use optimal policies in 
subproblems with per period cost c/2. Recombine when 
possible. 

Example 2. n = 2, X1, X2 are ind (0, 1), β = 1. 
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c 
.1 
.2 
.3 
.4 
.5 
.6 
.7 
.8 
.9 

Table 1: For n = 2 

expected return from heuristic policy 
1.271 
.996 
.799 
.644 
.519 
.409 
.304 
.201 
.100 

optimal expected return 
1.273 
1.000 
.804 
.651 
.524 
.412 
.305 
.201 
.100 
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Offer Vectors are iid 

Prop. V (r) is convex. 

Table 2: V (n) when X1, . . . , Xn are iid uniform (0, 1) and c = .1 

n V (n) 
1 0.553 
2 1.273 
3 2.035 
4 2.826 
5 3.637 
6 4.463 
7 5.302 
8 6.150 
9 7.007 
10 7.871 
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